Rinkevich, F. D., Leichter, C. A., Lazo, T. A., Hardstone, M. C. and Scott, J. G.  2013. Variable fitness costs for pyrethroid resistance alleles in the house fly, Musca domestica, in the absence of insecticide pressure.  Pestic. Biochem. Physiol. 105: 161-168.

Rodrigues, A. R. S., Ruberson, J. R., Torres, J. B., Siqueira, H. A. A. and Scott, J. G.  2013. Rodrigues, A. R. S., Ruberson, J. R., Torres, J. B., Herbert Álvaro A. Siqueira, H. A. A. and Scott, J. G. 2013. Pyrethroid resistance and its inheritance in a field population of Hippodamia convergens (Guérin-Méneville) (Coleoptera: Coccinellidae).  Pestic.Biochem. Physiol. 105: 135-143.

Rinkevich, F. D., Schweitzer, P. A and Scott, J. G.  2013. Limitations of RNAi of α6 nicotinic acetylcholine receptor subunits for assessing the in vivo sensitivity to spinosad.  Insect Sci. 20: 101-108.

Rinkevich, F. D., Hedtke, S. M., Leichter, C. A., Harris, S. A., Su, C., Brady, S. G., Taskin, V., Qiu, X. and Scott, J. G.  2012.  Multiple origins of kdr-type resistance in the house fly, Musca domestica.  PLOS One 7:e52761.

Gao, Q., Li, M., Sheng, D., Scott, J. G. and Qiu, X.  2012. Overexpression of multiple cytochrome P450s is associated with pyrethroid resistance in Chinese house flies (Musca domestica).  Pestic. Biochem. Physiol. 104: 252-260.

Rinkevich, F. D. and Scott, J. G.  2012. Reduction of dADAR affects the sensitivity of spinosad and imidacloprid to Drosophila melanogaster Pestic. Biochem. Physiol. 104: 163-169.

Rinkevich, F. D., Schweitzer, P. A and Scott, J. G.  2012. Antisense sequencing improves the accuracy and precision of A-to-I editing measurements using the peak height ratio method. BMC Res. Notes. 5:63. 

Wang, Q., Li, M., Pan, J., Di, M., Liu, Q. Meng, F., Scott, J. G. and Qui, X. 2012. Diversity and frequencies of genetic mutations involved in insecticide resistance in field populations of the house fly (Musca domestica L.) from China. Pestic. Biochem. Physiol. 102: 153-159.

Lin, G. G.-H. and Scott, J. G.  2011.  Investigations of the constitutive overexpression of CYP6D1 in the permethrin resistant LPR strain of house fly (Musca domestica). Pestic. Biochem. Physiol. 100: 130-134.

Lin, G. G.-H., Kozaki, T. and Scott, J. G.  2011. Hormone receptor-like in 96 and broad-complex modulate phenobarbital induced transcription of cytochrome P450 CYP6D1 in Drosophila S2 cells.  Insect Molec. Biol. 20:87-95.

Rinkevich, F. D., Chen, M., Shelton, A. M. and Scott, J. G.  2010.  Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella.  Invert. Neurosci. 10: 25-33

Hardstone, M. C. Komagata, O., Kasai, S., Tomita, T. and Scott, J. G.  2010.  Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus, Insect Molec. Biol. 19: 717-726.

Hardstone, M. C. and Scott, J. G.  2010.  Is Apis mellifera more sensitive to insecticides than other insects? Pest Management Science 66: 1171-1180.

Hardstone, M. C. and Scott, J. G.  2010.  A review of the interactions between multiple insecticide resistance loci.  Pestic. Biochem. Physiol. 97:123-128.

Scott, I. M., Thaler, J. S. and Scott, J. G.  2010.  Response of a generalist herbivore Trichoplusia ni to jasmonate-mediated induced defence in tomato.  J. Chem. Ecol. 36: 490-499.

Hardstone, M. C., Huang, X., Harrington, L. C. and Scott, J. G.  2010.  Differences in development, glycogen and lipid content associated with cytochrome P450-mediated permethrin resistance in Culex pipiens quinquefasciatus (Diptera: Culicidae).  J. Med. Entomol. 47: 188-198.

Kozaki, T., Brady, S. and Scott, J. G.  2009.  Frequencies and evolution of organophosphate insensitive acetylcholinesterase alleles in laboratory and field populations of the house fly, Musca domestica L.  Pestic. Biochem. Physiol. 95: 6-11.

Hamm, R. L., Gao, J.-R., Lin, G. and Scott, J. G.  2009.  Selective advantage for IIIM males over YM males in competition over 12 generations in Musca domestica L. (Diptera: Muscidae) Environ. Entomol. 38: 499-504.

Scott, J. G, Liu, N., Kristensen, M. and Clark, A. G.  2009.  A case for sequencing the genome of the house fly, Musca domestica (Diptera: Muscidae). J. Med. Entomol. 46: 175-82.

Rinkevich, F. D. and Scott, J. G.  2009.  Transcriptional diversity and allelic variation in nicotinic acetylcholine receptor subunits of the red flour beetle, Tribolium castaneum.  Insect Molec. Biol. 18: 233-242.

Hardstone, M. C., Lazzaro, B. L. and Scott, J. G.  2009.  The effect of three environmental conditions on the fitness of cytochrome P450 monooxygenase-mediated permethrin resistance in Culex pipiens quinquefasciatus. BMC Evol. Biol. 9: 42.

Hamm, R. L. and Scott, J. G.  2009.  A high frequency of male determining factors in male house flies, Musca domestica L. (Diptera:  Muscidae), from Ipswich, Australia. J. Med. Entomol. 46: 169-172.

Hardstone, M. C., Leichter, C. A. and Scott, J. G. 2009.  Multiplicative interaction between the two major mechanisms of permethrin resistance, cytochrome P450-monooxygenase detoxification and kdr, in mosquitoes.  J. Evol. Biol. 22: 416-423..

Hamm, R. L. and Scott, J. G.  2008. Changes in the frequency of YM versus IIIM in the house fly, Musca domestica L., under field and laboratory conditions.  Genetics Res. 90: 493-498.

Tribolium Genome Sequencing Consortium 2008.  The genome of the model beetle and pest Tribolium castaneum.  Nature 452: 949-955.

Scott, J. G.  2008 a.  Insect Cytochrome P450s:  Thinking Beyond Detoxification.    In Recent Advances in Insect Physiology, Toxicology and Molecular Biology, N. Liu, ed. Research Signpost, Kerala, India. pp 117-124.

Kozaki, T., Kimmelblatt, B. A., Hamm, R. L. and Scott, J. G.  2008.  Comparison of two acetylcholinesterase gene cDNAs of the Lesser Mealworm, Alphitobius diaperinus, in Insecticide Susceptible and Resistant Strains.  Arch. Insect Biochem. Physiol. 67: 130-138.

Kaufman, P. E., Gerry, A. C., Rutz, D. A. and Scott, J. G. 2007. Monitoring susceptibility of house flies (Musca domestica L.) in the United States to imidacloprid. J. Agric. Urban Entomol. 23: 195-200.

Gao, J.-R., Deacutis, J. and Scott, J. G. 2007.  The nicotinic acetylcholine receptor subunits Mda5 and Mdb3 on autosome 1 of Musca domestica are not involved in spinosad resistance.  Insect Molec. Biol. 16: 691-701.

Hardstone, M. C., Leichter, C. A., Harrington, L. C., Kasai, S., Tomita, T. and Scott, J. G. 2007.  Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited cross-resistance in larvae of the southern house mosquito, Culex pipiens quinquefasciatus. Pestic. Biochem Physiol. 89: 175-184.

Deacutis, J. M., Leichter, C. A., Gerry, A. C., Rutz, D. A., Watson, W. D., Geden, C. J. and Scott, J. G. 2007.  Susceptibility of field collected house flies to spinosad before and after a season of use.  J. Agric. Urban Entomol. 23: 105-110.

Rinkevich, F. D., Hamm, R. L., Geden, C. J. and Scott, J. G. 2007.  Dynamics of insecticide resistance alleles in two different climates over an entire field season. Insect Biochem. Molec. Biol. 37: 550-558.

Gao, J.-R., Deacutis, J. and Scott, J. G.  2007.  The nicotinic acetylcholine receptor subunit gene Mda6 from Musca domestica is diversified via post transcriptional modification.  Insect Molec. Biol. 16: 325-334.

Gao, J.-R., Kozaki, T., Leichter, C. A., Rinkevich, F. D., Shono, T. and Scott, J. G.  2007.  The A302S mutation in Rdl that confers resistance to cyclodienes and limited cross-resistance to fipronil is undetectable in field populations of house flies from the USA. Pestic. Biochem. Physiol. 88: 66-70.

Gao, J.-R., Deacutis, J. and Scott, J. G.  2007.  The nicotinic acetylcholine receptor subunit Mdalpha2 from the housefly, Musca domestica. Arch. Insect Biochem. Molec. Biol.  (64: 30-42).

Ozoe, Y., Ishikawa, S., Tomiyama, S., Ozoe, F. and Scott, J. G.  2007.  Antagonism of the GABA receptor of dieldrin-resistant houseflies by fipronil and its analogues.  In Synthesis and Chemistry of Agrochemicals Series VII, J. W. Lyga and G. Theodoritis, ed. Amer. Chem Soc., Washington, DC, pp 39-50.

Gao, J. and Scott, J. G.  2006.  Use of quantitative real-time PCR to estimate the size of the house fly (Musca domestica) genome. Insect Molec. Biol. 15: 835-837.

Hamm, R. L., Kaufman, P. E., Reasor, C. A., Rutz, D. A. and Scott, J. G.  2006.  Resistance to cyfluthrin and tetrachlorvinphos in the lesser mealworm, Alphitobius diaperinus, collected from the eastern United States.  Pest Manag. Sci. 62: 673-677.

Gao, J. and Scott, J. G.  2006. Role of the transcriptional repressor mdGfi-1 in CYP6D1v1-mediated insecticide resistance in the house fly, Musca domestica.  Insect Biochem. Molec. Biol. 36: 387-395.

Rinkevich, F. D., Zhang, L., Hamm, R. L., Brady, S. G. Lazzaro, B. P. and Scott, J. G.  2006. Frequencies of the pyrethroid resistance alleles of Vssc1 and CYP6D1 in house flies from the eastern United States.  Insect Molec. Biol. 15: 157-167.

Hardstone, M. C., Baker, S. A., Ewer, J. and Scott, J. G.  2006.  Deletion of Cyp6d4 does not alter toxicity of insecticides to Drosophila melanogaster Pestic. Biochem. Physiol. 84:  236-242.

Paul, A., Harrington, L. C. and Scott, J. G.  2006. Evaluation of novel insecticides for control of the dengue vector, Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 43: 55-60.

Paul, A., Harrington, L. C., Zhang, L. and Scott, J. G.  2005.  Insecticide resistance in Culex pipiens from New York. J. Am. Mosq. Cont. Assoc. 21: 305-309.

Ponlawat, A., Scott, J. G. and Harrington, L. C.  2005.  Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand.  J. Med. Entomol. 42: 821-825.

Hamm, R., Shono, T. and Scott, J. G.  2005. A cline in frequency of autosomal males is not associated with insecticide resistance in house fly.  J. Econ. Entomol. 98: 171-176.

Shono, T. Zhang, L. and Scott, J. G. 2004.  Indoxacarb resistance in the house fly, Musca domestica.  Pestic. Biochem. Physiol. 80: 106-112.

Scott, J. G., Leichter, C. A. and Rinkevich, F. D. 2004.  Insecticide resistant strains of house flies, Musca domestica show limited cross-resistance to chlorfenapyr.  J. Pestic. Sci. 29: 124-126.

Scott, J. G., and Kasai, S. 2004.  Evolutionary plasticity of monooxygenase-mediated resistance.  Pestic. Biochem. Physiol. 78:171-178.

Scott, I. M.,  Jensen, H.,  Scott,  J. G., Isman, M. B., Arnason, J. T.  and Philogène B. J. R. 2003.  Botanical insecticides for controlling agricultural pests : piperamides and the Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Arch. Insect Biochem. Physiol. 54: 212-225.

Brown, D., Zhang, L. Wen, Z. and Scott, J. G. 2003.  Induction of P450 monooxygenases in the German cockroach, Blattella germanica L. Arch. Insect Biochem. Physiol. 53: 119-124.

Shono, T. and Scott, J. G. 2003.  Spinosad resistance in the house fly, Musca domestica, is due to a recessive factor on autosome 1. Pestic. Biochem. Physiol. 75: 1-7.

Scott, J. G. and Zhang, L. 2003.  The house fly aliesterase gene (MdαE7) is not associated with insecticide resistance or P450 expression in three strains of house fly.  Insect Biochem. Molec. Biol. 33: 139-144.

Shono, T., Kasai, S., Kamiya, E., Kono, Y. and Scott, J. G. 2002.  Genetics and mechanisms of permethrin resistance in the YPER strain of house fly. Pestic. Biochem. Physiol. 73: 27-36.

Seifert, J. and Scott, J. G. 2002.  The CYP6D1v1 allele is associated with pyrethroid resistance in the house fly, Musca domestica.  Pestic. Biochem. Physiol. 72: 40-44.

Scott, J. G. and Kasai, S.  2002.  Monooxygenase-Mediated Insecticide Resistance: Regulation of CYP6D1 Expression.  In Agrochemical Resistance Extent, Mechanism and Detection, J. M. Clark and I. Yamaguchi, eds. ACS, Washington, DC, pp. 24-41.

Kasai, S. and Scott, J. G. 2001. Expression and regulation of CYP6D3 in house fly, Musca domestica (L). Insect Biochem. Molec. Biol. 32: 1-8.

Scott, J. G. and Wen, Z. 2001. Cytochromes P450 of insects: the tip of the iceberg. Pest Management Sci. 57: 958-967.

Wen, Z., Horak, C. E. and Scott, J. G. 2001. CYP9E2, CYP4C21 and related pseudogenes from German cockroaches, Blattella germanica: implications for molecular evolution, expression studies and nomenclature of P450s. Gene 272: 257-266.

Kaufman, P. E., Scott, J. G. and Rutz, D. A. 2001. Monitoring insecticide resistance in house flies (Diptera:Muscidae) from New York dairies. Pest Manag. Sci. 57: 514-521.

Kasai, S. and Scott, J. G. 2001. A house fly gene homologous to the zinc finger proto-oncogene Gfi-1. Biochem. Biophys. Res. Comm. 283: 644-647.

Kasai, S. and Scott, J. G. 2001. Cytochrome P450s CYP6D3 and CYP6D1 are part of a P450 gene cluster on autosome 1 in house fly. Insect Molec. Biol. 10: 191-196

Wen, Z. and Scott, J. G. 2001. Cloning of two novel P450 cDNAs from German cockroaches, Blattella germanica (L.): CYP6K1 and CYP6J1. Insect Molec. Biol. 10: 131-137.

Scott, J. G. 2001. Cytochrome P450 monooxygenases and insecticide resistance: lessons from CYP6D1. In Biochemical Sites of Insecticide Action and Resistance, I. Ishaaya, ed. Springer-Verlag, New York, pp 255-267.

Wen, Z. and Scott, J. G. 2001. Cytochrome P450 CYP6L1 is specifically expressed in the reproductive tissues of adult male German cockroaches, Blattella germanica (L.). Insect Biochem. Molec. Biol. 31: 179-187.

Korytko, P.K., MacIntyre, R. J. and Scott, J. G.  2000.  Expression and activity of a house-fly cytochrome P450, CYP6D1, in Drosophila melanogaster. Insect Molec. Biol. 9: 441-449.

Kasai, S. and Scott, J. G. 2000. Over-expression of cytochrome P450 CYP6D1 in pyrethroid resistant strains of house fly from North America. Pestic. Biochem. Physiol. 68: 34-41.

Scott, J. G., Foroozesh, M., Hopkins, N. E., Alefantis, T. G. and Alworth, W. L. 2000. Inhibition of cytochrome P450 6D1 by alkynylarenes, methylenedioxyarenes and other substituted aromatics, Pestic. Biochem. Physiol. 67: 63-71.

Korytko, P. J., Quimby, F. W. and Scott, J. G. 2000. Metabolism of phenanthrene by house fly CYP6D1 and dog liver cytochrome P450. J. Biochem. Molec. Toxicol. 14: 20-25. 

Scott, J. G., Alefantis, T. G., Kaufman, P. E. and Rutz, D. A. 2000. Insecticide resistance in house flies from caged-layer poultry facilities. Pest Management Sci. 56: 147-153.